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Abstract-This paper is concerned with the appropriate choice of state variables within the con­
tinuum model or oriented media. It is shown that residual deformation, strain and wryness can be
considered as such quantities. The compatibility conditions for them are derived, which make the
inverse problem of determining the displacement and director triad fields well-posed. The principle
offrame indifference justifies the use of these quantities as state variables in the free energy density.
Governing and constitutive equations are studied in detail. A comparison with the continuum model
of crystals with continuously distributed dislocations is provided. ~~ 1997 Elsevier Science Ltd.

1. INTRODUCTION

In various problems of materials science the influence of the microstructure on the mech­
anical behaviour can be of major importance. Such problems are, among others, the
localization of shear bands in single crystals, the evolution of micro- and macrocracks and
the martensite phase transition. The account of microstructure can be made by introducing
a triad ofvectors (directors) attached to each point of the continuum [Cosserat and Cosserat
(1907); Toupin (1964); Truesdell and Noll (1965)]. It is essential then to extend the concept
of motion of such materials involving also the transformation law of the triads, The latter,
complementing the displacement field, should be regarded as additional degrees-of-freedom
of the theory with microstructure.

The next logical step in developing the kinematics of oriented continua is associated
with an appropriate choice of strain measures. The latter depends on the definition of the
rigid-body motions of materials in such a manner, that the once chosen strain measures
should characterize fully the displacement and director distortion fields up to a rigid-body
motion. Eringen and Kafadar (1977) presented a list of strain measures consisting of the
residual distortion, director deformation and wryness. They also derived the compatibility
conditions for them.

A system ofstatic equations (ofdynamic equations in general) for the oriented continua
can be derived by postulating the principle of virtual work (or the action principle). This
leads to the well-established balance of momentum and director momentum [Toupin
(1964); Capriz and Podio-Guidugli (1976); Capriz (1989)]. For oriented continua, whose
mechanical response is determined by a single function called the free energy density,
constitutive equations for the stresses, director stresses and couple-stresses can be estab­
lished. This completes the construction of the model.

In this paper, we derive formulae expressing the displacement and director distortion
fields in terms of the residual distortion, director deformation and torsion fields, provided
the compatibility conditions are fulfilled. These formulae are similar to those derived
recently by Le and Stumpf (1996a) in the continuum theory of dislocations. They clearly
show that the displacement and director deformation fields are determined from the residual
distortion, director deformation and torsion fields uniquely up to a rigid-body motion.
Using the principle of frame indifference, we justify the use of the residual distortion,
director deformation and wryness as state variables in the constitutive equations (or in the
free energy density, if it exists). Further consequences of this result for the constitutive

* Dedicated to Professor Erwin Stein on the occasion of his 65th birthday.
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equations will be shown. By identifying the directors with the lattice vectors and the din~ctor

distortion with the elastic distortion, governing and constitutive equations for crystals
and polycrystals can be derived. For crystals (or polycrystals) containing continuously
distributed dislocations Kroner (1992) and Le and Stumpf (1994) require the free energy
density per unit volume of the reference crystal to depend only on the elastic deformation
and on the torsion (it satisfies then the principle offrame indifference as well as the principle
of initial scaling indifference). In this special case, and provided the microtraction specified
on the boundary is zero, the governing and constitutive equations for oriented continua
are shown to be equivalent to those derived in the recently proposed micromodels of jinite
elastoplasticity [Stumpf and Le (1993); Le and Stumpf (1994, 1996a,b,c); Naghdi and
Srinivasa (1993, 1994)], if the dissipation there is not taken into account. Despite this fact,
the equations proposed in Le and Stumpf (1994, 1996a,b,c) are formulated in clear and
physically tractable stress measures so that it is more convenient to use them instead of
those in Toupin (1964), Capriz and Podio-Guidugli (1976) and Capriz (1989).

2. STRAIN MEASURES

Let us consider a body PJ, whose points X, Y, ... , E:JB can be identified with their
position vectors X, Y, ... ,E Iff in a fixed reference configuration, where Iff is the three­
dimensional Euclidean space. A motion of this body can be described by means of smooth
invertible functions </J(X, t)

x = </J(X, t) = X+u(X, t), (1)

with x E Iff the position vector in the current configuration and u(X, t) the displacement field.
Introducing basis vectors GA and ga and their duals GA and ga at X and x, respectively, one
can define the deformation gradient F and its determinant J by

F = a</JlaX = F';..ga <8> GA
, J = detF. (2)

We further stipulate that J > O. Throughout the paper, summation convention for repeated
indices is employed. With the metric tensor g = gabga <8> gb of the Euclidean space, also
referred to as the isomorphism from the translation space 1/* to its dual space 1/, the
Cauchy-Green deformation tensor C is defined by

This tensor C remains unchanged under a superposed rigid-body motion. Therefore, in
classical continuum mechanics, it is rightly referred to as state variable in the constitutive
equations.

By an oriented continuum we will understand now a body PJ endowed at each point
with a triad of deformable, linearly independent vectors, or directors, in Toupin's ter­
minologyt [see Toupin (1964); Truesdell and Noll (1965)]. We denote the triad of directors
at X by q;aE 1/, a = 1, 2, 3.t The motion of such a body can be described by eqn (I) and
the two-point tensor

(3)

which maps the triad q;a at X into the triad d a, a = 1,2,3 at x

t In the modern literature this continuum is also called continuum with affine microstructure or micromorphic
continuum [see Eringen and Kadafar (1977); Capriz and Podio-Guidugli (1976); Capriz (1989)].

t Greek indices are used to numerate the directors.
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d, = D£&"
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(4)

The field D will be called the director distortion field. Here the reciprocal director triads
£&', d' (one-forms) are defined through the relations

where the symbol ~p stands for the Kronecker delta and the dot denotes the scalar product
of dual tensors. The determinant of D is supposed to be positive. We regard D(X, t) as an
additional unknown field, which, together with ¢(X, t), characterizes fully the motion of
the oriented continuum.

The triad £&, can be expressed in terms of GA through the following relation

(5)

where the matrix y~ in general is not derivable from any coordinate transformation. Using
the anholonomic base £&" we can represent D in the form

(6)

Representations of this type have been used frequently in finite elastoplasticity with micro­
structure [Le and Stumpf (1994)].

Let us seek the set of kinematic variables, which plays the same role in the theory of
oriented continuum as C in classical continuum mechanics. We introduce the following
field

(7)

which is called residual distortion. When the director distortion D and the deformation
gradient F are equal, that means the element and the directors are deformed together, then
H = 1. Thus, H measures the difference between the compatible deformation gradient F
and the (in general) incompatible director distortion D. For crystals and polycrystals it will
be shown, in Section 6, that D can be identified with the elastic distortion and H corresponds
then to the plastic distortion. Referring to the anholonomic base £&, we have

(8)

Next, we introduce the symmetric tensor field

(9)

which is called director deformation, With C~B one can measure lengths (and angles) of
the deformed directors through the undeformed ones. Indeed, let £&1 and £&2 be two directors
given by

Then from eqns (4) and (9) we have

The components of C with respect to the anholonomic base £&, give the lengths and angles
of the corresponding deformed directors directly. For crystals and polycrystals C will be
identified with the elastic deformation field.
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Finally, we introduce the gradient of D with respect to the reference configuration

(10)

wherein the component representation we use for simplicity cartesian coordinates so that the
comma preceding indices denotes the partial derivatives with respect to the corresponding
coordinates. Pulling back one leg of this tensor with D to the reference configuration, we
obtain the third rank tensor field

(11)

which is called wryness. Its components r~c = (D-l)~D~,B can be interpreted as the Chri­
stoffel symbols of the connection V induced by D as follows

(12)

with WI = W~GB' W 2 = WiGc two arbitrary vectors. It is easy to prove that (12) qualifies
itself as the connection. The distinguished feature of this connection is that VWI V = 0 for
every vector field V, which is the pull-back of a constant vector v by D. The skew-symmetric
part ofr

(13)

forms the tensor field called torsion of the connection V. For crystals and polycrystals we
shall see that r is closely related to the dislocation density.

Since C and r are derivable from the tensor field D, they should satisfy some com­
patibility conditions. Using differential geometry one can prove that the following com­
patibility condition

R=O (14)

has to be satisfied, with the fourth rank curvature tensor R given by [see, e.g. Sternberg
(1983)]

(15)

which means that the curvature of the connection V vanishes [see the proof in Noll (1967)].
Following Noll (1967), one can also introduce the third rank tensor field K with the

components

A A {A}K BC = r BC - BC ' (16)

with {~d the Christoffel symbol of the Riemannian connection induced by the strain tensor
field C. We call K the contortion tensor field. Torsion and contortion determine each other
in the following sense [Noll (1967)]

(17)

Let us find out the compatibility condition for H. Since F is the deformation gradient,
the following equations hold true
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F'A,B -F~,A = O.
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(18)

Substituting F = DH from eqn (7) into (18) and contracting the obtained equation with
D- 1 we get

(19)

Equation (19) can also be considered, together with eqns (14) and (17), as the compatibility
conditions for H, C and r [cf. Eringen and Kafadar (1977)].

3. INTEGRABILITY CONDITION

In classical continuum mechanics it is well known, that the knowledge of the Cauchy­
Green deformation tensor field C is sufficient to determine the deformation gradient F and
subsequently the displacement field u uniquely up to a rigid body motion, provided C
satisfies the Riemann compatibility conditions. Now let us consider the inverse problem of
determining u and D from the given fields H, C, T1

, provided the compatibility conditions
(14), (17) and (19) are fulfilled. There are nine independent components of the residual
distortion tensor field H, six of the symmetric deformation tensor field C, and nine of the
torsion field T1

, from which 12 components of u and D should be determined. The similar
problem in the nonlinear continuum theory of dislocations is considered in Le and Stumpf
(1996a).

To solve this problem, let us first determine D from C and T1
• The system of partial

differential equations for Dreads

(20)

where r~c are the Christoffel symbols of the connection V. In this section we shall work
out formulae explicitly in components. Note that the r~c can also be expressed through C'
and T1 according to eqns (16) and (17), namely

r A {A} K A 1C'-I)AD[C' C' C']BC = BC + BC = 2 BD,C + CD,B - HC,D

Equation (20) can be considered as a system of partial differential equations for the nine
components of D. The existence of the solution of (20) is ensured, if the following inte­
grability conditions are fulfilled

D~,DC - D~.CD = O.

Let us calculate the second derivative of D taking eqn (20) into account

(22)

(23)

Substituting eqn (23) into the integrability conditions (22), we can rewrite them in the form

D'AR~CD = 0, (24)

with R~CD the components of the curvature tensor (15). Thus eqn (24) is equivalent to eqn
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Fig. 1. A motion of an oriented medium.

(14) and expresses nothing else, but the fact that the curvature of the connection V has to
vanish.

If the condition (14) is fulfilled, one can integrate eqn (20) to determine D. Let us fix
some arbitrary point Xo of the body. Let c(s) be a curve connecting Xo with another
arbitrary point X such that c(O) = Xo (Fig. 2). In the reference configuration this curve is
described by the equation

(25)

Multiplying both sides of eqn (20) by the tangent vector XC of the curve (the dot denotes
here the derivative with respect to s) we get

d
-·D=DP
ds

with the tensor P having the components

(26)

(27)

Thus, the system of partial differential equations for D is transformed into the linear
ordinary differential equation for D along the curve c(s) with the tensor P as the given
function of s. The solution of eqn (27) can be found in the form [see Gantmacher (1960)]

(28)

with Do the prescribed value of D at the point Xo and Os the following matricant

~x
;('=;(' (8)

Fig. 2. A curve c(s).
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(29)

where 1 is the identity tensor. Since the right stretch tensor following from the polar
decomposition theorem applied to D can be calculated from the strain tensor C, only three
components of the rotation tensor should be prescribed at this point. Due to the integrability
conditions (22) the solution D does not depend upon the choice of the curve c(s). Therefore,
if the body is simply connected, the solution for D presented by eqns (28) and (29) is unique
up to a rigid body rotation.

Having determined D, we can easily get the dt:formation gradient Fby multiplying (7)
withD

F=DH. (30)

Assuming that H, C and T I satisfy the compatibility condition (19), we multiply eqn (30)
with the tangent vector X of the curve c(s) connecting two arbitrary points to get

d .
-x=DHXds .

Equation (32) yields the following solution

x(s) = xo+ J:DHXdS.

(31 )

(32)

It is easy to check that, if the tensor field D is determined uniquely up to a rigid-body
rotation, then x is determined by eqn (32) uniquely up to the rigid-body motion (with the
same rotation tensor) for simply connected bodies.

4. PRINCIPLE OF VIRTUAL WORK

The formulation of the virtual work principle in the theory of oriented media depends
essentially on the choice of the principal unknown functions. In the most natural setting
we regard x and D as such unknown quantities subject to variation. We define the local
virtual work in the following way

J1fI] = L«ph, Gradl)x > + < JI, JD > + < pi, GradJD » dv, (33)

where <.,. ) denotes the pairing between dual tensors. We call ph, JI and pI stresses, director
stresses and microstresses, respectively. We postulate now the principle of virtual work in
the form

J1fI] = r (Bh
• Jx+ < BI

, JD > ) dv +J « p~, Jx > + < p~, JD > ) da (34)
J~ o~

for arbitrary sub-bodies OIl, with Bh and BI the body macro- and microforce, and ~ and
p~ the macro- and microtraction specified on the boundary cOlI, respectively. Standard
procedure leads to the following equations [cf. Capriz (1989)]
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Divph+Bh = 0, (35)

DivPI __ Jl+BI = 0, (36)

and boundary conditions

phN = P~, (37)

piN = P~, (38)

Consider now the special case, when a function WI(F, D, GradD) exists such that

(39)

The oriented media of the type (39) are called hyperelastic and the function
WI(F, D, GradD) is called free energy density. In this case ph, pI and Jl are given by

h aWII
p =. aF O.Orado'

I aWII
J = - aD F,Orado'

I aWl Ip=
aGradD F.o '

and the mechanical response is completely governed by this free energy density.

5. FRAME INDIFFERENCE

(40)

(41)

(42)

Let us consider the special case of hyperelastic oriented media, whose mechanical
response is governed by the function WI (F, D, GradD). The stress state arising within bodies
is produced as a result of strains leading to the energy stored. Therefore, if we superpose a
rigid-body motion onto the actual motion of the body we must also expect WI (F, D, GradD)
to remain unchanged. Such a scalar function is called frame indifferent.

Consider two motions ¢(X, t), D(X, t) and ¢*(X, t), D*(X, t) of an oriented body.
These motions are regarded as differing from one another by a rigid-body motion, if at any
instant they are related by

¢*(X, t) = c(t) +Q(t)[tj)(X, t) -xo],

D*(X, t) = Q(t)D(X, t),

(43)

(44)

where c(t) is a time-dependent point, Q(t) is a time-dependent orthogonal tensor and Xo is
a fixed point. The precise meaning of eqn (44) is that if the rigid-body motion eqn (43) is
applied to the underlying body, its directors in all points will rotate with the same Q.

When the rigid-body motion (43), eqn (44) is superposed, we have

F* = QF,

GradD* = QGradD,

(45)

(46)
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A scalar function is said to be frame indifferent if it does not change its value when D, F,
GradD are changed according to eqns (44)-(46). Now we want to show that if the free
energy density is frame indifferent, it can depend only on H, C' and r.

Using the definitions (7)-(11) one can see that

(47)

(48)

and

(49)

hold. Hence, any scalar function depending on X, H, C and r is frame indifferent.
Now let us consider two motions if>(X, t), D(X, t) and if>*(X, t), D*(X, t) with the same

strain measures H = H*, C'* = C and r = r*. We assume the following local relation
between D and D* at the point X

D* = QD, (50)

where Q is an arbitrary second rank tensor. From the condition C = C* it is easy to show
that Q must be orthogonal. From the other two conditions, H = H* and r = r*, one can
show that the relations (45) and (46) are fulfilled. Thus, according to the principle of frame
indifference the energy of these two motions should be the same so that we can write

(51)

We shall assume that the oriented material is homogeneous so that no explicit dependency
of Won X is present.

Due to eqn (51) the constitutive eqns (40) and (41) become more specific. Let us find
them out. Applying the rule of differentiation one gets easily

(52)

In order to calculate JI we use the following formulae

Making use of the rule of differentiation one gets again

[ aw aw aw ]
(J')A =(D-I)B 1 HA+2CI __I I rA .

a a a B D IlD acl arB DEH D AD DE

Similarly

(53)

(54)

(55)
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Fig. 3. Multiplicative decomposition: (a) initial state; (b) deformed state; and (c) relaxed state
(reference crystal).

(56)

The fonnulae (52), (55) and (56) play the role of the constitutive equations in the theory
of hyperelastic oriented continua.

6. APPLICATION TO CRYSTALS

It is well-known that dislocations, as bearers of the crystal defects, are responsible for
the slip and the plastic defonnation of crystals and polycrystals. A continuum model of
crystals (or polycrystals) [Bilby et al. (1955); Bilby et al. (1957); Kroner (1958,1960)] can
be developed by identifying the triad of directors d a with that of lattice vectors [cf. Naghdi
and Srinivasa (1993, 1994)]. The deformation tensor D corresponds then to the lattice
(elastic) deformation, which, in trend of the modern literature on finite elastoplasticity [see
Le and Stumpf (1993, 1994) and the papers quoted therein], is frequently denoted by Fe as
wellt. Now let us consider a crystal undergoing nonhomogeneous plastic deformation and
let us imaging the following thought experiment (Gedankenexperiment) : cut the defonned
body into infinitesimal elements and reduce the stresses to zero. The stress-free elements
will be called reference crystals. The fundamental assumption made by Bilby et al. (1955,
1957) and Kroner (1958, 1960) says that the elements are relaxed from the current state to
this stress free state by the inverse lattice defonnation D- 1

. In its terms, the residual
distortion tensor (7)

(57)

will be called plastic deformation and denoted also by FP. It is clear that H is a macroscopic
quantity and has nothing to do with the lattice vectors. Figure 3 shows the local relations
between different elements with their lattice vectors in the two-dimensional case.

Formula (57) corresponds to the multiplicative resolution of the total deformation.
This resolution was first introduced by Bilby et al. (1957) as a basic assumption to derive
the kinematics ofcrystals and polycrystals containing continuously distributed dislocations.
In Bilby et al. (1957) F, D, H are called the shape, lattice and dislocation deformation,
respectively. We adopt here the terminology used by Kroner (1958, 1960) and Lee (1969).
The tensor C from eqn (9) (denoted also by ce

)

tIn Le and Stumpf (1994) the following component representation of the lattice deformation was used:
F' = (Fe);g. @ qz".
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a) b)
Fig. 4. Definition of Burgers vector: (a) current configuration; (b) reference crystal.

C1 = DTgD =, ce, (58)

will be called the elastic strain tensor.
It is clear that from C alone one cannot determine D uniquely due to its incompatibility.

Let us take now an arbitrary surface A bounded by a contour c in the current configuration
and consider the integral

b = -tD-t dx, (59)

which measures the incompatibility of the elastic deformation. If eqn (59) would vanish for
all closed contours, then the director deformation could be presented as the gradient of a
vector field. One can show that, in the limiting case of a continuum model (if we let the
lattice constant approach zero), eqn (59) coincides with the resultant Burgers vector of all
dislocations, whose dislocation lines intersect the surface A. The microscopic picture would
look like Fig. 4.

Now let us apply Stokes' theorem to the contour integral (59)

(60)

with n the normal vector to the surface A. For infinitesimal contours c we get from eqn
(60)

b = ocnda, IX = -curlD- t
• (61)

The tensor IX is called the dislocation density (see Fig. 5).
The dislocation density IX and its associated tensor (D- 1)~b - (D- t )~c (which is skew­

symmetric with respect to the covariant indices) are two-point tensors. Pulling back two
leg of the latter with the help of D- 1 gives

db=anda

c
da

Fig. 5. Dislocation density tensor ex.
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(·.pA = Db[(D-1)A _(D-1)A ]DCl}BC B c,b b,c C· (62)

This tensor can be interpreted as the torsion of the so-called crystal connection [see the
geometric interpretation of this tensor in terms of the crystal connection in Le and Stumpf
(1994)], One can also prove the following relation

(63)

Le and Stumpf (1994, 1996b) showed that, if the free energy per unit volume of the
perfect crystal satisfies the principles of frame indifference and initial scaling indiffen:nce,
it can depend only on ce and i

to = w(ce, I), (64)

This result is in agreement with Kroner's requirement stating that the free energy density
can depend only on the elastic strain and on the torsion [Kroner (1992)].

The formula (64) leads to the following free energy per unit initial volume

W = WI (H, c', r) = JPw(ce
, i), (65)

with JP = detH, ce defined by eqn (58) and tby (63). Making use of the formulae (52), (55)
and (56) one gets the stresses

(66)

the director stresses

and the microstresses

(68)

The stresses s and couple-stresses Sd are given by

(69)

(70)

7. COMPARISON WITH FINITE ELASTOPLASTICITY WITH MICROSTRUCTURE

In the finite elastoplasticity with microstructure we regard x and H as the principal
unknown functions subject to variation. The local virtual work is defined as follows

lr'Ifl2 = t.« P, D(jx > + < J, (jH > + < pd, Grad(jH » dv, (71)
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Fig. 6. Physical meaning of the couple stresses.
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The stress measures P, J and p d introduced here will be called the (first Piola-Kirchhoff)
macrostress tensor, the configurational stress tensor and the couple stress tensor, respec­
tively. Based on this form of the local virtual work Le and Stumpf (1994) postulated the
following principle of virtual work

[Ylfl 2 = (B'bX+<Bd,bH»dv+l «P"bx>+<P~,bH»da, (72)
J~ o~

using x and H as independent unknown fields [see also Naghdi and Srinivasa (1994)]. From
the variational principle (72) the following equilibrium equations and boundary conditions
have been derived

DivP+B = 0,

PN = P.,

pdN = Pe.

(73)

(74)

(75)

(76)

The necessity of taking the couple stress into account can be clarified by the following
example [Kroner (1960)]. Let us cut an element of a deformed beam. It may happen that
dislocations, represented by the symbol -l, are found near the boundary of this element
(see Fig. 6). One can show then that a distribution of tractions is needed to keep all
dislocations in equilibrium. From the microscopical point of view, these tractions are
stresses, but from the macroscopical point of view, these are couple stresses.

The motion of dislocations is accompanied by the change of the configuration. This
change is due to so-called configurational forces and configurational stresses J, respectively.
In Fig. 7, four special cases of the configurational cases are indicated, where the case (d)

.. . . . . .. . ... . ... ... . .
• ••...L.. . . . . .

a) Dislocation
Peach-Koehler

Phase 1

~2

O NCrack
::::j::::::::::::::::::.:::::::::::l

b)Crack tip
Rice J-Integral

/ IV
/ V
1 V
T /

c)Phase interface d)Plastic deformation
Driving force Configurational stress

Fig. 7. The configurational force.
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corresponds to the plastic deformation as a result of the motion of continuously distributed
dislocations.

In the special case, when

{r1l/ 2 = c5LWI (F, H, GradH) dv,

the stress measures in eqns (73) and (74) are given by

aW21
p = iw H,GradH'

aW21J=--
oH F,GradH'

pct = _ aW2 I
aGradHF,H'

(77)

(78)

(79)

(80)

It can easily be shown that from (64) another equivalent form of the free energy per
unit initial volume follows

where

W= W2 (F,H,GradH),

W2 = JP u;(ce(F, H), i(H, GradH».

(81)

(82)

Assuming that eqn (77) holds, one can derive the following constitutive equations in terms
ofW2

(83)

(84)

(85)

(86)

(87)

where

Let us establish now the relationship between the stress measures P, J, pd, given here
with the stress measures ph, J1

, pI of Section 5 in the special case of hyperelastic oriented
media with the free energy density (64). We substitute D = FH- I (from eqn (57» into the
local virtual work (33). After summing up terms with the same variations c5x, c5H and Dc5H
and comparing with the local virtual work (71) we get
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and

(90)

It can be proved, by direct calculation, that eqns (35)-(38) and (73)-(76) are equivalent,
provided the microtraction on the boundary is zero and the body forces, body microforces
and boundary tractions in eqns (34) and (72), respectively, are interrelated by

(91)

(92)

(93)

Note that this equivalence is no longer valid, if the microtraction p~ on the boundary does
not vanish. In that case the boundary condition cannot be reduced to that of eqn (76).

8. CONCLUSIONS

There are two different approaches to the model of oriented continua. Toupin (1964),
Capriz and Podio-Guidugli (1976) and Capriz (1989) consider the displacement and the
director deformation fields as the primary unknown functions, which should be subject to
variation in the principle of virtual work. Alternatively, Le and Stumpf (1994, 1996a,b,c)
and Naghdi and Srinivasa (1993, 1994) take the displacement and the microdeformation
(plastic deformation) fields as the primary unknown functions subject to variation. We
have shown that if the microtraction on the boundary is zero, these two theories are
equivalent within the elastic range given by eqn (64). Despite this fact, the latter approach
leads to the clear and physically tractable stress measures eqns (83)~(87) so that it is more
convenient to use them instead of those defined in eqns (66)~(68).
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